NAG Toolbox for MATLAB

c06ec

1 Purpose

c06ec calculates the discrete Fourier transform of a sequence of n complex data values. (No extra workspace required.)

2 Syntax

$$[x, y, ifail] = c06ec(x, y, 'n', n)$$

3 Description

Given a sequence of n complex data values z_j , for j = 0, 1, ..., n - 1, co6ec calculates their discrete Fourier transform defined by

$$\hat{z}_k = a_k + ib_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j \times \exp\left(-i\frac{2\pi jk}{n}\right), \qquad k = 0, 1, \dots, n-1.$$

(Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.)

To compute the inverse discrete Fourier transform defined by

$$\hat{w}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j \times \exp\left(+i\frac{2\pi jk}{n}\right),$$

this function should be preceded and followed by calls of c06gc to form the complex conjugates of the z_j and the \hat{z}_k .

c06ec uses the fast Fourier transform (FFT) algorithm (see Brigham 1974). There are some restrictions on the value of n (see Section 5).

4 References

Brigham E O 1974 The Fast Fourier Transform Prentice-Hall

5 Parameters

5.1 Compulsory Input Parameters

1: $\mathbf{x}(\mathbf{n})$ – double array

If **x** is declared with bounds $(0 : \mathbf{n} - 1)$ in the (sub)program from which coese is called, then $\mathbf{x}(j)$ must contain x_i , the real part of z_i , for $j = 0, 1, \dots, n - 1$.

2: y(n) – double array

If y is declared with bounds $(0 : \mathbf{n} - 1)$ in the (sub)program from which coesc is called, then $\mathbf{y}(j)$ must contain y_i , the imaginary part of z_j , for $j = 0, 1, \dots, n - 1$.

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The dimension of the arrays x, y. (An error is raised if these dimensions are not equal.)

[NP3663/21] c06ec.1

c06ec NAG Toolbox Manual

n, the number of data values. The largest prime factor of \mathbf{n} must not exceed 19, and the total number of prime factors of \mathbf{n} , counting repetitions, must not exceed 20.

Constraint: $\mathbf{n} > 1$.

5.3 Input Parameters Omitted from the MATLAB Interface

None

5.4 Output Parameters

1: $\mathbf{x}(\mathbf{n})$ – double array

The real parts a_k of the components of the discrete Fourier transform. If \mathbf{x} is declared with bounds $(0:\mathbf{n}-1)$ in the (sub)program from which coese is called, then for $0 \le k \le n-1$, a_k is contained in $\mathbf{x}(k)$.

2: y(n) - double array

The imaginary parts b_k of the components of the discrete Fourier transform. If \mathbf{y} is declared with bounds $(0:\mathbf{n}-1)$ in the (sub)program from which co6ec is called, then for $0 \le k \le n-1$, b_k is contained in $\mathbf{y}(k)$.

3: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

At least one of the prime factors of **n** is greater than 19.

ifail = 2

n has more than 20 prime factors.

ifail = 3

On entry, $\mathbf{n} < 1$.

ifail = 4

An unexpected error has occurred in an internal call. Check all (sub)program calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken is approximately proportional to $n \times \log n$, but also depends on the factorization of n. c06ec is faster if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

On the other hand, c06ec is particularly slow if n has several unpaired prime factors, i.e., if the 'square-free' part of n has several factors. For such values of n, c06fc (which requires an additional n double elements of workspace) is considerably faster.

c06ec.2 [NP3663/21]

9 Example

```
x = [0.34907;
     0.5489000000000001;
     0.74776;
     0.94459;
     1.1385;
     1.3285;
     1.5137];
y = [-0.37168;
     -0.35669;
     -0.31175;
     -0.23702;
     -0.13274;
     0.00074;
     0.16298];
[xOut, yOut, ifail] = c06ec(x, y)
xOut =
   2.4836
   -0.5518
   -0.3671
   -0.2877
   -0.2251
   -0.1483
   0.0198
yOut =
   -0.4710
   0.4968
   0.0976
   -0.0586
   -0.1748
   -0.3084
   -0.5650
ifail =
           0
```

[NP3663/21] c06ec.3 (last)